Comparisons of optically monitored small-scale stirred tank vessels to optically controlled disposable bag bioreactors

نویسندگان

  • Michael A Hanson
  • Kurt A Brorson
  • Antonio R Moreira
  • Govind Rao
چکیده

BACKGROUND Upstream bioprocesses are extremely complex since living organisms are used to generate active pharmaceutical ingredients (APIs). Cells in culture behave uniquely in response to their environment, thus culture conditions must be precisely defined and controlled in order for productivity and product quality to be reproducible. Thus, development culturing platforms are needed where many experiments can be carried out at once and pertinent scale-up information can be obtained. RESULTS Here we have tested a High Throughput Bioreactor (HTBR) as a scale-down model for a lab-scale wave-type bioreactor (CultiBag). Mass transfer was characterized in both systems and scaling based on volumetric oxygen mass transfer coefficient (kLa) was sufficient to give similar DO trends. HTBR and CultiBag cell growth and mAb production were highly comparable in the first experiment where DO and pH were allowed to vary freely. In the second experiment, growth and mAb production rates were lower in the HTBR as compared to the CultiBag, where pH was controlled. The differences in magnitude were not considered significant for biological systems. CONCLUSION Similar oxygen delivery rates were achieved in both systems, leading to comparable culture performance (growth and mAb production) across scales and mode of mixing. HTBR model was most fitting when neither system was pH-controlled, providing an information-rich alternative to typically non-monitored mL-scale platforms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cell Culture Bioreactors

Cell Culture Bioreactors Basic Types of Bioreactors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 Stirred Tank (Well Mixed) vs. Tubular Reactor (Plug Flow) . . . . . . . . . . . . . . . . . 3 Segregated Bioreactors (Dead Zone Present) Compartmentalized Bioreactors . . 4 Implication When Growth or Reaction Occurs in the Reactor . . . . . ....

متن کامل

Fluid dynamics and mixing behavior in orbitally shaken bioreactors for mammalian cell cultivation

Rationale and significance. Recombinant therapeutic proteins are frequently produced in mammalian cells cultivated in suspension in large-scale stirred tank bioreactors. There are three major drawbacks to stirred-tank bioreactors. First, they are expensive to purchase and maintain, limiting their availability to some potential users. Second, they have not been adapted to volumetric scales less ...

متن کامل

CFD for Characterizing Standard and Single-use Stirred Cell Culture Bioreactors

Driven by global competition and rising cost pressure in the pharmaceutical industry, over the last ten years single-use bioreactors have been increasingly used for animal cell cultivations in screening experiments, seed inoculum and seed train productions as well as in small and medium scale production processes of proteins (in particular, antibodies and vaccines). In contrast to re-usable bio...

متن کامل

Evaluation of the advanced micro-scale bioreactor (ambr™) as a highthroughput tool for cell culture process development

Introduction Bio-pharmaceutical industries face an increasing demand to accelerate process development and reduce costs. This challenge requires high throughput tools to replace the traditional combination of shake flasks and small-scale stirred tank bioreactors. A conventional and widely used process development tool is the stirred tank reactor (STR) ranging from approximately 1L to 10L in wor...

متن کامل

Validation of an optical sensor-based high-throughput bioreactor system for mammalian cell culture.

Cell culture optimization is a labor-intensive process requiring a large number of experiments to be conducted under varying conditions. Here we describe a high-throughput bioreactor system that allows 12 mini stirred-tank bioreactors to be operated simultaneously. All bioreactors are monitored by low-cost minimally invasive optical sensors for pH and dissolved oxygen. The sensors consist of si...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Microbial Cell Factories

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2009